Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Exact asymptotic solutions to nonlinear Hawkes processes: a systematic classification of the steady-state solutions (2110.01523v2)

Published 4 Oct 2021 in cond-mat.stat-mech and q-fin.TR

Abstract: Hawkes point processes are first-order non-Markovian stochastic models of intermittent bursty dynamics with applications to physical, seismic, epidemic, biological, financial, and social systems. While accounting for positive feedback loops that may lead to critical phenomena in complex systems, the standard linear Hawkes process only describes excitative phenomena. To describe the co-existence of excitatory and inhibitory effects (or negative feedbacks), extensions involving nonlinear dependences of the intensity as a function of past activity are needed. However, such nonlinear Hawkes processes have been found hitherto to be analytically intractable due to the interplay between their non-Markovian and nonlinear characteristics, with no analytical solutions available. Here, we present various exact and robust asymptotic solutions to nonlinear Hawkes processes using the field master equation approach. We report explicit power law formulas for the steady state intensity distributions $P_{\mathrm{ss}}(\lambda)\propto \lambda{-1-a}$, where the tail exponent $a$ is expressed analytically as a function of parameters of the nonlinear Hawkes models. We present three robust interesting characteristics of the nonlinear Hawkes process: (i) for one-sided positive marks (i.e., in the absence of inhibitory effects), the nonlinear Hawkes process can exhibit any power law relation either as intermediate asymptotics ($a\leq 0$) or as true asymptotics ($a>0$) by appropriate model selection; (ii) for distribution of marks with zero mean (i.e., for balanced excitatory and inhibitory effects), the Zipf law ($a\approx 1$) is universally observed for a wide class of nonlinear Hawkes processes with fast-accelerating intensity map; (iii) for marks with a negative mean, the asymptotic power law tail becomes lighter with an exponent increasing above 1 ($a>1$) as the mean mark becomes more negative.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube