Papers
Topics
Authors
Recent
Search
2000 character limit reached

Safety aware model-based reinforcement learning for optimal control of a class of output-feedback nonlinear systems

Published 1 Oct 2021 in eess.SY and cs.SY | (2110.00271v1)

Abstract: The ability to learn and execute optimal control policies safely is critical to realization of complex autonomy, especially where task restarts are not available and/or the systems are safety-critical. Safety requirements are often expressed in terms of state and/or control constraints. Methods such as barrier transformation and control barrier functions have been successfully used, in conjunction with model-based reinforcement learning, for safe learning in systems under state constraints, to learn the optimal control policy. However, existing barrier-based safe learning methods rely on full state feedback. In this paper, an output-feedback safe model-based reinforcement learning technique is developed that utilizes a novel dynamic state estimator to implement simultaneous learning and control for a class of safety-critical systems with partially observable state.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.