Papers
Topics
Authors
Recent
Search
2000 character limit reached

Low-lying zeros in families of elliptic curve $L$-functions over function fields

Published 30 Sep 2021 in math.NT | (2110.00102v1)

Abstract: We investigate the low-lying zeros in families of $L$-functions attached to quadratic and cubic twists of elliptic curves defined over $\mathbb{F}_q(T)$. In particular, we present precise expressions for the expected values of traces of high powers of the Frobenius class in these families with a focus on the lower order behavior. As an application we obtain results on one-level densities and we verify that these elliptic curve families have orthogonal symmetry type. In the quadratic twist families our results refine previous work of Comeau-Lapointe. Moreover, in this case we find a lower order term in the one-level density reminiscent of the deviation term found by Rudnick in the hyperelliptic ensemble. On the other hand, our investigation is the first to treat these questions in families of cubic twists of elliptic curves and in this case it turns out to be more complicated to isolate lower order terms due to a larger degree of cancellation among lower order contributions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.