Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep Neural Compression Via Concurrent Pruning and Self-Distillation

Published 30 Sep 2021 in cs.LG and cs.CL | (2109.15014v1)

Abstract: Pruning aims to reduce the number of parameters while maintaining performance close to the original network. This work proposes a novel \emph{self-distillation} based pruning strategy, whereby the representational similarity between the pruned and unpruned versions of the same network is maximized. Unlike previous approaches that treat distillation and pruning separately, we use distillation to inform the pruning criteria, without requiring a separate student network as in knowledge distillation. We show that the proposed {\em cross-correlation objective for self-distilled pruning} implicitly encourages sparse solutions, naturally complementing magnitude-based pruning criteria. Experiments on the GLUE and XGLUE benchmarks show that self-distilled pruning increases mono- and cross-lingual LLM performance. Self-distilled pruned models also outperform smaller Transformers with an equal number of parameters and are competitive against (6 times) larger distilled networks. We also observe that self-distillation (1) maximizes class separability, (2) increases the signal-to-noise ratio, and (3) converges faster after pruning steps, providing further insights into why self-distilled pruning improves generalization.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.