Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Neural Compression Via Concurrent Pruning and Self-Distillation (2109.15014v1)

Published 30 Sep 2021 in cs.LG and cs.CL

Abstract: Pruning aims to reduce the number of parameters while maintaining performance close to the original network. This work proposes a novel \emph{self-distillation} based pruning strategy, whereby the representational similarity between the pruned and unpruned versions of the same network is maximized. Unlike previous approaches that treat distillation and pruning separately, we use distillation to inform the pruning criteria, without requiring a separate student network as in knowledge distillation. We show that the proposed {\em cross-correlation objective for self-distilled pruning} implicitly encourages sparse solutions, naturally complementing magnitude-based pruning criteria. Experiments on the GLUE and XGLUE benchmarks show that self-distilled pruning increases mono- and cross-lingual LLM performance. Self-distilled pruned models also outperform smaller Transformers with an equal number of parameters and are competitive against (6 times) larger distilled networks. We also observe that self-distillation (1) maximizes class separability, (2) increases the signal-to-noise ratio, and (3) converges faster after pruning steps, providing further insights into why self-distilled pruning improves generalization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. James O' Neill (17 papers)
  2. Sourav Dutta (99 papers)
  3. Haytham Assem (6 papers)
Citations (5)