Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigation of Dataset Features for Just-in-Time Defect Prediction (2109.13634v1)

Published 25 Sep 2021 in cs.SE

Abstract: Just-in-time (JIT) defect prediction refers to the technique of predicting whether a code change is defective. Many contributions have been made in this area through the excellent dataset by Kamei. In this paper, we revisit the dataset and highlight preprocessing difficulties with the dataset and the limitations of the dataset on unsupervised learning. Secondly, we propose certain features in the Kamei dataset that can be used for training models. Lastly, we discuss the limitations of the dataset's features.

Citations (1)

Summary

We haven't generated a summary for this paper yet.