Papers
Topics
Authors
Recent
2000 character limit reached

Deep Learning Based Resource Assignment for Wireless Networks

Published 27 Sep 2021 in cs.LG, cs.IT, and math.IT | (2109.12970v1)

Abstract: This paper studies a deep learning approach for binary assignment problems in wireless networks, which identifies binary variables for permutation matrices. This poses challenges in designing a structure of a neural network and its training strategies for generating feasible assignment solutions. To this end, this paper develop a new Sinkhorn neural network which learns a non-convex projection task onto a set of permutation matrices. An unsupervised training algorithm is proposed where the Sinkhorn neural network can be applied to network assignment problems. Numerical results demonstrate the effectiveness of the proposed method in various network scenarios.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.