Time Series Model Attribution Visualizations as Explanations
Abstract: Attributions are a common local explanation technique for deep learning models on single samples as they are easily extractable and demonstrate the relevance of input values. In many cases, heatmaps visualize such attributions for samples, for instance, on images. However, heatmaps are not always the ideal visualization to explain certain model decisions for other data types. In this review, we focus on attribution visualizations for time series. We collect attribution heatmap visualizations and some alternatives, discuss the advantages as well as disadvantages and give a short position towards future opportunities for attributions and explanations for time series.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.