Papers
Topics
Authors
Recent
2000 character limit reached

The JDDC 2.0 Corpus: A Large-Scale Multimodal Multi-Turn Chinese Dialogue Dataset for E-commerce Customer Service

Published 27 Sep 2021 in cs.CL | (2109.12913v1)

Abstract: With the development of the Internet, more and more people get accustomed to online shopping. When communicating with customer service, users may express their requirements by means of text, images, and videos, which precipitates the need for understanding these multimodal information for automatic customer service systems. Images usually act as discriminators for product models, or indicators of product failures, which play important roles in the E-commerce scenario. On the other hand, detailed information provided by the images is limited, and typically, customer service systems cannot understand the intents of users without the input text. Thus, bridging the gap of the image and text is crucial for the multimodal dialogue task. To handle this problem, we construct JDDC 2.0, a large-scale multimodal multi-turn dialogue dataset collected from a mainstream Chinese E-commerce platform (JD.com), containing about 246 thousand dialogue sessions, 3 million utterances, and 507 thousand images, along with product knowledge bases and image category annotations. We present the solutions of top-5 teams participating in the JDDC multimodal dialogue challenge based on this dataset, which provides valuable insights for further researches on the multimodal dialogue task.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.