Papers
Topics
Authors
Recent
Search
2000 character limit reached

Anytime Game-Theoretic Planning with Active Reasoning About Humans' Latent States for Human-Centered Robots

Published 26 Sep 2021 in cs.RO | (2109.12490v1)

Abstract: A human-centered robot needs to reason about the cognitive limitation and potential irrationality of its human partner to achieve seamless interactions. This paper proposes an anytime game-theoretic planner that integrates iterative reasoning models, a partially observable Markov decision process, and chance-constrained Monte-Carlo belief tree search for robot behavioral planning. Our planner enables a robot to safely and actively reason about its human partner's latent cognitive states (bounded intelligence and irrationality) in real-time to maximize its utility better. We validate our approach in an autonomous driving domain where our behavioral planner and a low-level motion controller hierarchically control an autonomous car to negotiate traffic merges. Simulations and user studies are conducted to show our planner's effectiveness.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.