Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EllipseNet: Anchor-Free Ellipse Detection for Automatic Cardiac Biometrics in Fetal Echocardiography (2109.12474v1)

Published 26 Sep 2021 in eess.IV, cs.AI, cs.CV, and cs.LG

Abstract: As an important scan plane, four chamber view is routinely performed in both second trimester perinatal screening and fetal echocardiographic examinations. The biometrics in this plane including cardio-thoracic ratio (CTR) and cardiac axis are usually measured by sonographers for diagnosing congenital heart disease. However, due to the commonly existing artifacts like acoustic shadowing, the traditional manual measurements not only suffer from the low efficiency, but also with the inconsistent results depending on the operators' skills. In this paper, we present an anchor-free ellipse detection network, namely EllipseNet, which detects the cardiac and thoracic regions in ellipse and automatically calculates the CTR and cardiac axis for fetal cardiac biometrics in 4-chamber view. In particular, we formulate the network that detects the center of each object as points and regresses the ellipses' parameters simultaneously. We define an intersection-over-union loss to further regulate the regression procedure. We evaluate EllipseNet on clinical echocardiogram dataset with more than 2000 subjects. Experimental results show that the proposed framework outperforms several state-of-the-art methods. Source code will be available at https://git.openi.org.cn/capepoint/EllipseNet .

Citations (12)

Summary

We haven't generated a summary for this paper yet.