Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Delta Hedging with Transaction Costs: Dynamic Multiscale Strategy using Neural Nets (2109.12337v1)

Published 25 Sep 2021 in q-fin.RM

Abstract: In most real scenarios the construction of a risk-neutral portfolio must be performed in discrete time and with transaction costs. Two human imposed constraints are the risk-aversion and the profit maximization, which together define a nonlinear optimization problem with a model-dependent solution. In this context, an optimal fixed frequency hedging strategy can be determined a posteriori by maximizing a sharpe ratio simil path dependent reward function. Sampling from Heston processes, a convolutional neural network was trained to infer which period is optimal using partial information, thus leading to a dynamic hedging strategy in which the portfolio is hedged at various frequencies, each weighted by the probability estimate of that frequency being optimal.

Summary

We haven't generated a summary for this paper yet.