Papers
Topics
Authors
Recent
2000 character limit reached

Quantification of empirical determinacy: the impact of likelihood weighting on posterior location and spread in Bayesian meta-analysis estimated with JAGS and INLA (2109.11870v1)

Published 24 Sep 2021 in stat.ME and stat.CO

Abstract: The popular Bayesian meta-analysis expressed by Bayesian normal-normal hierarchical model (NNHM) synthesizes knowledge from several studies and is highly relevant in practice. Moreover, NNHM is the simplest Bayesian hierarchical model (BHM), which illustrates problems typical in more complex BHMs. Until now, it has been unclear to what extent the data determines the marginal posterior distributions of the parameters in NNHM. To address this issue we computed the second derivative of the Bhattacharyya coefficient with respect to the weighted likelihood, defined the total empirical determinacy (TED), the proportion of the empirical determinacy of location to TED (pEDL), and the proportion of the empirical determinacy of spread to TED (pEDS). We implemented this method in the R package \texttt{ed4bhm} and considered two case studies and one simulation study. We quantified TED, pEDL and pEDS under different modeling conditions such as model parametrization, the primary outcome, and the prior. This clarified to what extent the location and spread of the marginal posterior distributions of the parameters are determined by the data. Although these investigations focused on Bayesian NNHM, the method proposed is applicable more generally to complex BHMs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.