Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Linear convergence of randomized Kaczmarz method for solving complex-valued phaseless equations (2109.11811v1)

Published 24 Sep 2021 in math.NA and cs.NA

Abstract: A randomized Kaczmarz method was recently proposed for phase retrieval, which has been shown numerically to exhibit empirical performance over other state-of-the-art phase retrieval algorithms both in terms of the sampling complexity and in terms of computation time. While the rate of convergence has been studied well in the real case where the signals and measurement vectors are all real-valued, there is no guarantee for the convergence in the complex case. In fact, the linear convergence of the randomized Kaczmarz method for phase retrieval in the complex setting is left as a conjecture by Tan and Vershynin. In this paper, we provide the first theoretical guarantees for it. We show that for random measurements $\mathbf{a}_j \in \mathbb{C}n, j=1,\ldots,m $ which are drawn independently and uniformly from the complex unit sphere, or equivalent are independent complex Gaussian random vectors, when $m \ge Cn$ for some universal positive constant $C$, the randomized Kaczmarz scheme with a good initialization converges linearly to the target solution (up to a global phase) in expectation with high probability. This gives a positive answer to that conjecture.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)