Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Convergence of the randomized Kaczmarz method for phase retrieval (1706.10291v2)

Published 30 Jun 2017 in math.NA, cs.IT, math.IT, math.OC, and math.PR

Abstract: The classical Kaczmarz iteration and its randomized variants are popular tools for fast inversion of linear overdetermined systems. This method extends naturally to the setting of the phase retrieval problem via substituting at each iteration the phase of any measurement of the available approximate solution for the unknown phase of the measurement of the true solution. Despite the simplicity of the method, rigorous convergence guarantees that are available for the classical linear setting have not been established so far for the phase retrieval setting. In this short note, we provide a convergence result for the randomized Kaczmarz method for phase retrieval in $\mathbb{R}d$. We show that with high probability a random measurement system of size $m \asymp d$ will be admissible for this method in the sense that convergence in the mean square sense is guaranteed with any prescribed probability. The convergence is exponential and comparable to the linear setting.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.