Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cohomology of semisimple local systems and the Decomposition theorem (2109.11578v4)

Published 23 Sep 2021 in math.AG, math.DG, and math.RT

Abstract: In this paper, we study the cohomology of semisimple local systems in the spirit of classical Hodge theory. On the one hand, we establish a generalization of Hodge-Riemann bilinear relations. For a semisimple local system on a smooth projective variety, we define a canonical isomorphism from the complex conjugate of its cohomology to the cohomology of the dual local system, which is a generalization of the classical Weil operator for pure Hodge structures. This isomorphism establishes a relation between the twisted Poincar\'e pairing, a purely topological object, and a positive definite Hermitian pairing. On the other hand, we prove a global invariant cycle theorem for semisimple local systems. As an application, we give a new and geometric proof of Sabbah's Decomposition Theorem for the direct images of semisimple local systems under proper algebraic maps, without using the category of polarizable twistor D-modules.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.