Papers
Topics
Authors
Recent
2000 character limit reached

Convolution and Correlation Theorems for Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform

Published 1 Sep 2021 in eess.SP, cs.IT, math.FA, and math.IT | (2109.09682v1)

Abstract: The quaternion offset linear canonical transform(QOLCT) has gained much popularity in recent years because of its applications in many areas, including color image and signal processing. At the same time the applications of Wigner-Ville distribution (WVD) in signal analysis and image processing can not be excluded. In this paper we investigate the Winger-Ville Distribution associated with quaternion offset linear canonical transform (WVD-QOLCT). Firstly, we propose the definition of the WVD-QOLCT, and then several important properties of newly defined WVD-QOLCT, such as nonlinearity, bounded, reconstruction formula, orthogonality relation and Plancherel formula are derived. Secondly a novel canonical convolution operator and a related correlation operator for WVD-QOLCT are proposed. Moreover, based on the proposed operators, the corresponding generalized convolution, correlation theorems are studied.We also show that the convolution and correlation theorems of the QWVD and WVD-QLCT can be looked as a special case of our achieved results.

Citations (24)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.