Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

An asymptotic approach to proving sufficiency of Stein characterisations (2109.08579v2)

Published 17 Sep 2021 in math.PR and math.CA

Abstract: In extending Stein's method to new target distributions, the first step is to find a Stein operator that suitably characterises the target distribution. In this paper, we introduce a widely applicable technique for proving sufficiency of these Stein characterisations, which can be applied when the Stein operators are linear differential operators with polynomial coefficients. The approach involves performing an asymptotic analysis to prove that only one characteristic function satisfies a certain differential equation associated to the Stein characterisation. We use this approach to prove that all Stein operators with linear coefficients characterise their target distribution, and verify on a case-by-case basis that all polynomial Stein operators in the literature with coefficients of degree at most two are characterising. For $X$ denoting a standard Gaussian random variable and $H_p$ the $p$-th Hermite polynomial, we also prove, amongst other examples, that the Stein operators for $H_p(X)$, $p=3,4,\ldots,8$, with coefficients of minimal possible degree characterise their target distribution, and that the Stein operators for the products of $p=3,4,\ldots,8$ independent standard Gaussian random variables are characterising (in both settings the Stein operators for the cases $p=1,2$ are already known to be characterising). We leverage our Stein characterisations of $H_3(X)$ and $H_4(X)$ to derive characterisations of these target distributions in terms of iterated Gamma operators from Malliavin calculus, that are natural in the context of the Malliavin-Stein method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.