Higgledy-piggledy sets in projective spaces of small dimension (2109.08572v2)
Abstract: This work focuses on higgledy-piggledy sets of $k$-subspaces in $\text{PG}(N,q)$, i.e. sets of projective subspaces that are 'well-spread-out'. More precisely, the set of intersection points of these $k$-subspaces with any $(N-k)$-subspace $\kappa$ of $\text{PG}(N,q)$ spans $\kappa$ itself. We highlight three methods to construct small higgledy-piggledy sets of $k$-subspaces and discuss, for $k\in{1,N-2}$, 'optimal' sets that cover the smallest possible number of points. Furthermore, we investigate small non-trivial higgledy-piggledy sets in $\text{PG}(N,q)$, $N\leqslant5$. Our main result is the existence of six lines of $\text{PG}(4,q)$ in higgledy-piggledy arrangement, two of which intersect. Exploiting the construction methods mentioned above, we also show the existence of six planes of $\text{PG}(4,q)$ in higgledy-piggledy arrangement, two of which maximally intersect, as well as the existence of two higgledy-piggledy sets in $\text{PG}(5,q)$ consisting of eight planes and seven solids, respectively. Finally, we translate these geometrical results to a coding- and graph-theoretical context.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.