Papers
Topics
Authors
Recent
Search
2000 character limit reached

G-torsors and universal torsors over nonsplit del Pezzo surfaces

Published 16 Sep 2021 in math.AG and math.NT | (2109.08137v3)

Abstract: Let S be a smooth del Pezzo surface that is defined over a field K and splits over a Galois extension L. Let G be either the split reductive group given by the root system of $S_L$ in Pic $S_L$, or a form of it containing the N\'eron-Severi torus. Let $\mathcal{G}$ be the G-torsor over $S_L$ obtained by extension of structure group from a universal torsor $\mathcal{T}$ over $S_L$. We prove that $\mathcal{G}$ does not descend to S unless $\mathcal{T}$ does. This is in contrast to a result of Friedman and Morgan that such $\mathcal{G}$ always descend to singular del Pezzo surfaces over $\mathbb{C}$ from their desingularizations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.