Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Machine Learning Framework for Automatic Prediction of Human Semen Motility

Published 16 Sep 2021 in cs.LG, cs.AI, and cs.CV | (2109.08049v2)

Abstract: In this paper, human semen samples from the visem dataset collected by the Simula Research Laboratory are automatically assessed with machine learning methods for their quality in respect to sperm motility. Several regression models are trained to automatically predict the percentage (0 to 100) of progressive, non-progressive, and immotile spermatozoa in a given sample. The video samples are adopted for three different feature extraction methods, in particular custom movement statistics, displacement features, and motility specific statistics have been utilised. Furthermore, four machine learning models, including linear Support Vector Regressor (SVR), Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN), have been trained on the extracted features for the task of automatic motility prediction. Best results for predicting motility are achieved by using the Crocker-Grier algorithm to track sperm cells in an unsupervised way and extracting individual mean squared displacement features for each detected track. These features are then aggregated into a histogram representation applying a Bag-of-Words approach. Finally, a linear SVR is trained on this feature representation. Compared to the best submission of the Medico Multimedia for Medicine challenge, which used the same dataset and splits, the Mean Absolute Error (MAE) could be reduced from 8.83 to 7.31. For the sake of reproducibility, we provide the source code for our experiments on GitHub.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.