Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep Visual Navigation under Partial Observability

Published 16 Sep 2021 in cs.RO, cs.CV, and cs.LG | (2109.07752v3)

Abstract: How can a robot navigate successfully in rich and diverse environments, indoors or outdoors, along office corridors or trails on the grassland, on the flat ground or the staircase? To this end, this work aims to address three challenges: (i) complex visual observations, (ii) partial observability of local visual sensing, and (iii) multimodal robot behaviors conditioned on both the local environment and the global navigation objective. We propose to train a neural network (NN) controller for local navigation via imitation learning. To tackle complex visual observations, we extract multi-scale spatial representations through CNNs. To tackle partial observability, we aggregate multi-scale spatial information over time and encode it in LSTMs. To learn multimodal behaviors, we use a separate memory module for each behavior mode. Importantly, we integrate the multiple neural network modules into a unified controller that achieves robust performance for visual navigation in complex, partially observable environments. We implemented the controller on the quadrupedal Spot robot and evaluated it on three challenging tasks: adversarial pedestrian avoidance, blind-spot obstacle avoidance, and elevator riding. The experiments show that the proposed NN architecture significantly improves navigation performance.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.