Papers
Topics
Authors
Recent
Search
2000 character limit reached

BERT is Robust! A Case Against Synonym-Based Adversarial Examples in Text Classification

Published 15 Sep 2021 in cs.CL | (2109.07403v1)

Abstract: Deep Neural Networks have taken Natural Language Processing by storm. While this led to incredible improvements across many tasks, it also initiated a new research field, questioning the robustness of these neural networks by attacking them. In this paper, we investigate four word substitution-based attacks on BERT. We combine a human evaluation of individual word substitutions and a probabilistic analysis to show that between 96% and 99% of the analyzed attacks do not preserve semantics, indicating that their success is mainly based on feeding poor data to the model. To further confirm that, we introduce an efficient data augmentation procedure and show that many adversarial examples can be prevented by including data similar to the attacks during training. An additional post-processing step reduces the success rates of state-of-the-art attacks below 5%. Finally, by looking at more reasonable thresholds on constraints for word substitutions, we conclude that BERT is a lot more robust than research on attacks suggests.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.