Papers
Topics
Authors
Recent
2000 character limit reached

Bound on the Lyapunov exponent in Kerr-Newman black holes via a charged particle

Published 15 Sep 2021 in gr-qc and hep-th | (2109.07341v2)

Abstract: We investigate the conjecture on the upper bound of the Lyapunov exponent for the chaotic motion of a charged particle around a Kerr-Newman black hole. The Lyapunov exponent is closely associated with the maximum of the effective potential with respect to the particle. We show that when the angular momenta of the black hole and particle are considered, the Lyapunov exponent can exceed the conjectured upper bound. This is because the angular momenta change the effective potential and increase the magnitude of the chaotic behavior of the particle. Furthermore, the location of the maximum is also related to the value of the Lyapunov exponent and the extremal and non-extremal states of the black hole.

Citations (28)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.