Papers
Topics
Authors
Recent
2000 character limit reached

Steady states of active Brownian particles interacting with boundaries

Published 13 Sep 2021 in cond-mat.soft and cond-mat.stat-mech | (2109.06353v2)

Abstract: An active Brownian particle is a minimal model for a self-propelled colloid in a dissipative environment. Experiments and simulations show that, in the presence of boundaries and obstacles, active Brownian particle systems approach nontrivial nonequilibrium steady states with intriguing phenomenology, such as accumulation at boundaries, ratchet effects, and long-range depletion interactions. Nevertheless, theoretical analysis of these phenomena has proven difficult. Here we address this theoretical challenge in the context of non-interacting particles in two dimensions, basing our analysis on the steady-state Smoluchowski equation for the 1-particle distribution function. Our primary result is an approximation strategy that explicitly connects asymptotic solutions of the Smoluchowski equation to boundary conditions. We test this approximation against the exact analytic solution in a 2d planar geometry as well as numerical solutions in circular and elliptic geometries. We find good agreement so long as the boundary conditions do not vary too rapidly with respect to the persistence length of particle trajectories. Our results are relevant for characterizing long-range flows and depletion interactions in such systems. In particular, our framework shows how such behaviors are connected to the breaking of detailed balance at the boundaries.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.