Robust Stability of Neural Network-controlled Nonlinear Systems with Parametric Variability
Abstract: Stability certification and identifying a safe and stabilizing initial set are two important concerns in ensuring operational safety, stability, and robustness of dynamical systems. With the advent of machine-learning tools, these issues need to be addressed for the systems with machine-learned components in the feedback loop. To develop a general theory for stability and stabilizability of a neural network (NN)-controlled nonlinear system subject to bounded parametric variation, a Lyapunov-based stability certificate is proposed and is further used to devise a maximal Lipschitz bound for the NN controller, and also a corresponding maximal region-of-attraction (RoA) inside a given safe operating domain. To compute such a robustly stabilizing NN controller that also maximizes the system's long-run utility, a stability-guaranteed training (SGT) algorithm is proposed. The effectiveness of the proposed framework is validated through an illustrative example.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.