Papers
Topics
Authors
Recent
2000 character limit reached

Robust Stability of Neural Network-controlled Nonlinear Systems with Parametric Variability

Published 13 Sep 2021 in cs.LG, cs.SY, and eess.SY | (2109.05710v4)

Abstract: Stability certification and identifying a safe and stabilizing initial set are two important concerns in ensuring operational safety, stability, and robustness of dynamical systems. With the advent of machine-learning tools, these issues need to be addressed for the systems with machine-learned components in the feedback loop. To develop a general theory for stability and stabilizability of a neural network (NN)-controlled nonlinear system subject to bounded parametric variation, a Lyapunov-based stability certificate is proposed and is further used to devise a maximal Lipschitz bound for the NN controller, and also a corresponding maximal region-of-attraction (RoA) inside a given safe operating domain. To compute such a robustly stabilizing NN controller that also maximizes the system's long-run utility, a stability-guaranteed training (SGT) algorithm is proposed. The effectiveness of the proposed framework is validated through an illustrative example.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.