Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Compression of Neural Networks Using $\ell_0$-Norm Regularization and Weight Pruning (2109.05075v3)

Published 10 Sep 2021 in cs.LG, cs.AI, and eess.SP

Abstract: Despite the growing availability of high-capacity computational platforms, implementation complexity still has been a great concern for the real-world deployment of neural networks. This concern is not exclusively due to the huge costs of state-of-the-art network architectures, but also due to the recent push towards edge intelligence and the use of neural networks in embedded applications. In this context, network compression techniques have been gaining interest due to their ability for reducing deployment costs while keeping inference accuracy at satisfactory levels. The present paper is dedicated to the development of a novel compression scheme for neural networks. To this end, a new form of $\ell_0$-norm-based regularization is firstly developed, which is capable of inducing strong sparseness in the network during training. Then, targeting the smaller weights of the trained network with pruning techniques, smaller yet highly effective networks can be obtained. The proposed compression scheme also involves the use of $\ell_2$-norm regularization to avoid overfitting as well as fine tuning to improve the performance of the pruned network. Experimental results are presented aiming to show the effectiveness of the proposed scheme as well as to make comparisons with competing approaches.

Citations (6)

Summary

We haven't generated a summary for this paper yet.