Papers
Topics
Authors
Recent
2000 character limit reached

Kahler toric manifolds from dually flat spaces

Published 10 Sep 2021 in math.DG, cs.IT, math-ph, math.IT, math.MP, and math.SG | (2109.04839v1)

Abstract: We present a correspondence between real analytic K\"{a}hler toric manifolds and dually flat spaces, similar to Delzant correspondence in symplectic geometry. This correspondence gives rise to a lifting procedure: if $f:M\to M'$ is an affine isometric map between dually flat spaces and if $N$ and $N'$ are K\"{a}hler toric manifolds associated to $M$ and $M'$, respectively, then there is an equivariant K\"{a}hler immersion $N\to N'$. For example, we show that the Veronese and Segre embeddings are lifts of inclusion maps between appropriate statistical manifolds. We also discuss applications to Quantum Mechanics.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.