Papers
Topics
Authors
Recent
2000 character limit reached

Euphemistic Phrase Detection by Masked Language Model

Published 10 Sep 2021 in cs.CL | (2109.04666v1)

Abstract: It is a well-known approach for fringe groups and organizations to use euphemisms -- ordinary-sounding and innocent-looking words with a secret meaning -- to conceal what they are discussing. For instance, drug dealers often use "pot" for marijuana and "avocado" for heroin. From a social media content moderation perspective, though recent advances in NLP have enabled the automatic detection of such single-word euphemisms, no existing work is capable of automatically detecting multi-word euphemisms, such as "blue dream" (marijuana) and "black tar" (heroin). Our paper tackles the problem of euphemistic phrase detection without human effort for the first time, as far as we are aware. We first perform phrase mining on a raw text corpus (e.g., social media posts) to extract quality phrases. Then, we utilize word embedding similarities to select a set of euphemistic phrase candidates. Finally, we rank those candidates by a masked LLM -- SpanBERT. Compared to strong baselines, we report 20-50% higher detection accuracies using our algorithm for detecting euphemistic phrases.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.