Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assessing Machine Learning Approaches to Address IoT Sensor Drift (2109.04356v1)

Published 2 Sep 2021 in eess.SP, cs.LG, and stat.CO

Abstract: The proliferation of IoT sensors and their deployment in various industries and applications has brought about numerous analysis opportunities in this Big Data era. However, drift of those sensor measurements poses major challenges to automate data analysis and the ability to effectively train and deploy models on a continuous basis. In this paper we study and test several approaches from the literature with regard to their ability to cope with and adapt to sensor drift under realistic conditions. Most of these approaches are recent and thus are representative of the current state-of-the-art. The testing was performed on a publicly available gas sensor dataset exhibiting drift over time. The results show substantial drops in sensing performance due to sensor drift in spite of the approaches. We then discuss several issues identified with current approaches and outline directions for future research to tackle them.

Summary

We haven't generated a summary for this paper yet.