Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Calibrating chemical multisensory devices for real world applications: An in-depth comparison of quantitative Machine Learning approaches (1708.09175v1)

Published 30 Aug 2017 in cs.AI and cs.NE

Abstract: Chemical multisensor devices need calibration algorithms to estimate gas concentrations. Their possible adoption as indicative air quality measurements devices poses new challenges due to the need to operate in continuous monitoring modes in uncontrolled environments. Several issues, including slow dynamics, continue to affect their real world performances. At the same time, the need for estimating pollutant concentrations on board the devices, espe- cially for wearables and IoT deployments, is becoming highly desirable. In this framework, several calibration approaches have been proposed and tested on a variety of proprietary devices and datasets; still, no thorough comparison is available to researchers. This work attempts a benchmarking of the most promising calibration algorithms according to recent literature with a focus on machine learning approaches. We test the techniques against absolute and dynamic performances, generalization capabilities and computational/storage needs using three different datasets sharing continuous monitoring operation methodology. Our results can guide researchers and engineers in the choice of optimal strategy. They show that non-linear multivariate techniques yield reproducible results, outperforming lin- ear approaches. Specifically, the Support Vector Regression method consistently shows good performances in all the considered scenarios. We highlight the enhanced suitability of shallow neural networks in a trade-off between performance and computational/storage needs. We confirm, on a much wider basis, the advantages of dynamic approaches with respect to static ones that only rely on instantaneous sensor array response. The latter have been shown to be best choice whenever prompt and precise response is needed.

Citations (96)

Summary

We haven't generated a summary for this paper yet.