Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anti-drift in electronic nose via dimensionality reduction: a discriminative subspace projection approach (1901.02321v1)

Published 14 Dec 2018 in cs.LG and stat.ML

Abstract: Sensor drift is a well-known issue in the field of sensors and measurement and has plagued the sensor community for many years. In this paper, we propose a sensor drift correction method to deal with the sensor drift problem. Specifically, we propose a discriminative subspace projection approach for sensor drift reduction in electronic noses. The proposed method inherits the merits of the subspace projection method called domain regularized component analysis. Moreover, the proposed method takes the source data label information into consideration, which minimizes the within-class variance of the projected source samples and at the same time maximizes the between-class variance. The label information is exploited to avoid overlapping of samples with different labels in the subspace. Experiments on two sensor drift datasets have shown the effectiveness of the proposed approach.

Citations (20)

Summary

We haven't generated a summary for this paper yet.