Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Double-Scale Self-Supervised Hypergraph Learning for Group Recommendation (2109.04200v2)

Published 9 Sep 2021 in cs.IR and cs.AI

Abstract: With the prevalence of social media, there has recently been a proliferation of recommenders that shift their focus from individual modeling to group recommendation. Since the group preference is a mixture of various predilections from group members, the fundamental challenge of group recommendation is to model the correlations among members. Existing methods mostly adopt heuristic or attention-based preference aggregation strategies to synthesize group preferences. However, these models mainly focus on the pairwise connections of users and ignore the complex high-order interactions within and beyond groups. Besides, group recommendation suffers seriously from the problem of data sparsity due to severely sparse group-item interactions. In this paper, we propose a self-supervised hypergraph learning framework for group recommendation to achieve two goals: (1) capturing the intra- and inter-group interactions among users; (2) alleviating the data sparsity issue with the raw data itself. Technically, for (1), a hierarchical hypergraph convolutional network based on the user- and group-level hypergraphs is developed to model the complex tuplewise correlations among users within and beyond groups. For (2), we design a double-scale node dropout strategy to create self-supervision signals that can regularize user representations with different granularities against the sparsity issue. The experimental analysis on multiple benchmark datasets demonstrates the superiority of the proposed model and also elucidates the rationality of the hypergraph modeling and the double-scale self-supervision.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Junwei Zhang (54 papers)
  2. Min Gao (81 papers)
  3. Junliang Yu (34 papers)
  4. Lei Guo (110 papers)
  5. Jundong Li (126 papers)
  6. Hongzhi Yin (210 papers)
Citations (115)

Summary

We haven't generated a summary for this paper yet.