Self-explaining variational posterior distributions for Gaussian Process models
Abstract: Bayesian methods have become a popular way to incorporate prior knowledge and a notion of uncertainty into machine learning models. At the same time, the complexity of modern machine learning makes it challenging to comprehend a model's reasoning process, let alone express specific prior assumptions in a rigorous manner. While primarily interested in the former issue, recent developments intransparent machine learning could also broaden the range of prior information that we can provide to complex Bayesian models. Inspired by the idea of self-explaining models, we introduce a corresponding concept for variational GaussianProcesses. On the one hand, our contribution improves transparency for these types of models. More importantly though, our proposed self-explaining variational posterior distribution allows to incorporate both general prior knowledge about a target function as a whole and prior knowledge about the contribution of individual features.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.