Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Galaxy-Scale Test of General Relativity with Strong Gravitational Lensing (2109.02291v2)

Published 6 Sep 2021 in astro-ph.CO, gr-qc, and hep-ph

Abstract: Although general relativity (GR) has been precisely tested at the solar system scale, precise tests at a galactic or cosmological scale are still relatively insufficient. Here, in order to test GR at the galactic scale, we use the newly compiled galaxy-scale strong gravitational lensing (SGL) sample to constrain the parameter $\gamma_{PPN}$ in the parametrized post-Newtonian (PPN) formalism. We employ the Pantheon sample of type Ia supernovae observation to calibrate the distances in the SGL systems using the Gaussian Process method, which avoids the logical problem caused by assuming a cosmological model within GR to determine the distances in the SGL sample. Furthermore, we consider three typical lens models in this work to investigate the influences of the lens mass distributions on the fitting results. We find that the choice of the lens models has a significant impact on the constraints on the PPN parameter $\gamma_{PPN}$. We use the Bayesian information criterion as an evaluation tool to make a comparison for the fitting results of the three lens models, and we find that the most reliable lens model gives the result of $\gamma_{PPN}=1.065{+0.064}_{-0.074}$, which is in good agreement with the prediction of $\gamma_{PPN}=1$ by GR. As far as we know, our 6.4% constraint result is the best result so far among the recent works using the SGL method.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube