Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the square of the antipode in a connected filtered Hopf algebra (2109.02101v3)

Published 5 Sep 2021 in math.RA, math.CO, and math.QA

Abstract: It is well-known that the antipode $S$ of a commutative or cocommutative Hopf algebra satisfies $S{2}=\operatorname*{id}$ (where $S{2}=S\circ S$). Recently, similar results have been obtained by Aguiar, Lauve and Mahajan for connected graded Hopf algebras: Namely, if $H$ is a connected graded Hopf algebra with grading $H=\bigoplus_{n\geq0}H_n$, then each positive integer $n$ satisfies $\left( \operatorname*{id}-S2\right)n \left( H_n\right) =0$ and (even stronger) [ \left( \left( \operatorname{id}+S\right) \circ\left( \operatorname{id}-S2\right){n-1}\right) \left( H_n\right) = 0. ] For some specific $H$'s such as the Malvenuto--Reutenauer Hopf algebra $\operatorname{FQSym}$, the exponents can be lowered. In this note, we generalize these results in several directions: We replace the base field by a commutative ring, replace the Hopf algebra by a coalgebra (actually, a slightly more general object, with no coassociativity required), and replace both $\operatorname{id}$ and $S2$ by "coalgebra homomorphisms" (of sorts). Specializing back to connected graded Hopf algebras, we show that the exponent $n$ in the identity $\left( \operatorname{id}-S2\right) n \left( H_n\right) =0$ can be lowered to $n-1$ (for $n>1$) if and only if $\left( \operatorname{id} - S2\right) \left( H_2\right) =0$. (A sufficient condition for this is that every pair of elements of $H_1$ commutes; this is satisfied, e.g., for $\operatorname{FQSym}$.)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.