Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attentive Knowledge-aware Graph Convolutional Networks with Collaborative Guidance for Personalized Recommendation (2109.02046v2)

Published 5 Sep 2021 in cs.IR and cs.AI

Abstract: To alleviate data sparsity and cold-start problems of traditional recommender systems (RSs), incorporating knowledge graphs (KGs) to supplement auxiliary information has attracted considerable attention recently. However, simply integrating KGs in current KG-based RS models is not necessarily a guarantee to improve the recommendation performance, which may even weaken the holistic model capability. This is because the construction of these KGs is independent of the collection of historical user-item interactions; hence, information in these KGs may not always be helpful for recommendation to all users. In this paper, we propose attentive Knowledge-aware Graph convolutional networks with Collaborative Guidance for personalized Recommendation (CG-KGR). CG-KGR is a novel knowledge-aware recommendation model that enables ample and coherent learning of KGs and user-item interactions, via our proposed Collaborative Guidance Mechanism. Specifically, CG-KGR first encapsulates historical interactions to interactive information summarization. Then CG-KGR utilizes it as guidance to extract information out of KGs, which eventually provides more precise personalized recommendation. We conduct extensive experiments on four real-world datasets over two recommendation tasks, i.e., Top-K recommendation and Click-Through rate (CTR) prediction. The experimental results show that the CG-KGR model significantly outperforms recent state-of-the-art models by 1.4-27.0% in terms of Recall metric on Top-K recommendation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yankai Chen (29 papers)
  2. Yaming Yang (39 papers)
  3. Yujing Wang (53 papers)
  4. Jing Bai (46 papers)
  5. Xiangchen Song (22 papers)
  6. Irwin King (170 papers)
Citations (50)