Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakly Supervised Relative Spatial Reasoning for Visual Question Answering (2109.01934v1)

Published 4 Sep 2021 in cs.CV, cs.CL, and cs.LG

Abstract: Vision-and-language (V&L) reasoning necessitates perception of visual concepts such as objects and actions, understanding semantics and language grounding, and reasoning about the interplay between the two modalities. One crucial aspect of visual reasoning is spatial understanding, which involves understanding relative locations of objects, i.e.\ implicitly learning the geometry of the scene. In this work, we evaluate the faithfulness of V&L models to such geometric understanding, by formulating the prediction of pair-wise relative locations of objects as a classification as well as a regression task. Our findings suggest that state-of-the-art transformer-based V&L models lack sufficient abilities to excel at this task. Motivated by this, we design two objectives as proxies for 3D spatial reasoning (SR) -- object centroid estimation, and relative position estimation, and train V&L with weak supervision from off-the-shelf depth estimators. This leads to considerable improvements in accuracy for the "GQA" visual question answering challenge (in fully supervised, few-shot, and O.O.D settings) as well as improvements in relative spatial reasoning. Code and data will be released \href{https://github.com/pratyay-banerjee/weak_sup_vqa}{here}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Pratyay Banerjee (31 papers)
  2. Tejas Gokhale (28 papers)
  3. Yezhou Yang (119 papers)
  4. Chitta Baral (152 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.