Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model retraining and information sharing in a supply chain with long-term fluctuating demands (2109.01784v1)

Published 4 Sep 2021 in physics.soc-ph, cs.LG, and stat.AP

Abstract: Demand forecasting based on empirical data is a viable approach for optimizing a supply chain. However, in this approach, a model constructed from past data occasionally becomes outdated due to long-term changes in the environment, in which case the model should be updated (i.e., retrained) using the latest data. In this study, we examine the effects of updating models in a supply chain using a minimal setting. We demonstrate that when each party in the supply chain has its own forecasting model, uncoordinated model retraining causes the bullwhip effect even if a very simple replenishment policy is applied. Our results also indicate that sharing the forecasting model among the parties involved significantly reduces the bullwhip effect.

Citations (2)

Summary

We haven't generated a summary for this paper yet.