Papers
Topics
Authors
Recent
2000 character limit reached

Instabilities in Plug-and-Play (PnP) algorithms from a learned denoiser

Published 17 Aug 2021 in cs.CV, cs.NA, eess.IV, and math.NA | (2109.01655v1)

Abstract: It's well-known that inverse problems are ill-posed and to solve them meaningfully, one has to employ regularization methods. Traditionally, popular regularization methods are the penalized Variational approaches. In recent years, the classical regularization approaches have been outclassed by the so-called plug-and-play (PnP) algorithms, which copy the proximal gradient minimization processes, such as ADMM or FISTA, but with any general denoiser. However, unlike the traditional proximal gradient methods, the theoretical underpinnings, convergence, and stability results have been insufficient for these PnP-algorithms. Hence, the results obtained from these algorithms, though empirically outstanding, can't always be completely trusted, as they may contain certain instabilities or (hallucinated) features arising from the denoiser, especially when using a pre-trained learned denoiser. In fact, in this paper, we show that a PnP-algorithm can induce hallucinated features, when using a pre-trained deep-learning-based (DnCNN) denoiser. We show that such instabilities are quite different than the instabilities inherent to an ill-posed problem. We also present methods to subdue these instabilities and significantly improve the recoveries. We compare the advantages and disadvantages of a learned denoiser over a classical denoiser (here, BM3D), as well as, the effectiveness of the FISTA-PnP algorithm vs. the ADMM-PnP algorithm. In addition, we also provide an algorithm to combine these two denoisers, the learned and the classical, in a weighted fashion to produce even better results. We conclude with numerical results which validate the developed theories.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.