Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Variational Bayes algorithm and posterior consistency of Ising model parameter estimation (2109.01548v1)

Published 3 Sep 2021 in stat.ME, math.ST, and stat.TH

Abstract: Ising models originated in statistical physics and are widely used in modeling spatial data and computer vision problems. However, statistical inference of this model remains challenging due to intractable nature of the normalizing constant in the likelihood. Here, we use a pseudo-likelihood instead to study the Bayesian estimation of two-parameter, inverse temperature, and magnetization, Ising model with a fully specified coupling matrix. We develop a computationally efficient variational Bayes procedure for model estimation. Under the Gaussian mean-field variational family, we derive posterior contraction rates of the variational posterior obtained under the pseudo-likelihood. We also discuss the loss incurred due to variational posterior over true posterior for the pseudo-likelihood approach. Extensive simulation studies validate the efficacy of mean-field Gaussian and bivariate Gaussian families as the possible choices of the variational family for inference of Ising model parameters.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.