Papers
Topics
Authors
Recent
Search
2000 character limit reached

On a Partition Identity of Lehmer

Published 1 Sep 2021 in math.CO and math.NT | (2109.00609v2)

Abstract: Euler's identity equates the number of partitions of any non-negative integer n into odd parts and the number of partitions of n into distinct parts. Beck conjectured and Andrews proved the following companion to Euler's identity: the excess of the number of parts in all partitions of n into odd parts over the number of parts in all partitions of n into distinct parts equals the number of partitions of n with exactly one even part (possibly repeated). Beck's original conjecture was followed by generalizations and so-called "Beck-type" companions to other identities. In this paper, we establish a collection of Beck-type companion identities to the following result mentioned by Lehmer at the 1974 International Congress of Mathematicians: the excess of the number of partitions of n with an even number of even parts over the number of partitions of n with an odd number of even parts equals the number of partitions of n into distinct, odd parts. We also establish various generalizations of Lehmer's identity, and prove related Beck-type companion identities. We use both analytic and combinatorial methods in our proofs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.