Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On a Partition Identity of Lehmer (2109.00609v2)

Published 1 Sep 2021 in math.CO and math.NT

Abstract: Euler's identity equates the number of partitions of any non-negative integer n into odd parts and the number of partitions of n into distinct parts. Beck conjectured and Andrews proved the following companion to Euler's identity: the excess of the number of parts in all partitions of n into odd parts over the number of parts in all partitions of n into distinct parts equals the number of partitions of n with exactly one even part (possibly repeated). Beck's original conjecture was followed by generalizations and so-called "Beck-type" companions to other identities. In this paper, we establish a collection of Beck-type companion identities to the following result mentioned by Lehmer at the 1974 International Congress of Mathematicians: the excess of the number of partitions of n with an even number of even parts over the number of partitions of n with an odd number of even parts equals the number of partitions of n into distinct, odd parts. We also establish various generalizations of Lehmer's identity, and prove related Beck-type companion identities. We use both analytic and combinatorial methods in our proofs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.