Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

The second Bogolyubov theorem and global averaging principle for SPDEs with monotone coefficients (2109.00371v2)

Published 1 Sep 2021 in math.DS and math.PR

Abstract: In this paper, we establish the second Bogolyubov theorem and global averaging principle for stochastic partial differential equations (in short, SPDEs) with monotone coefficients. Firstly, we prove that there exists a unique $L{2}$-bounded solution to SPDEs with monotone coefficients and this bounded solution is globally asymptotically stable in square-mean sense. Then we show that the $L{2}$-bounded solution possesses the same recurrent properties (e.g. periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent, Levitan almost periodic, etc.) in distribution sense as the coefficients. Thirdly, we prove that the recurrent solution of the original equation converges to the stationary solution of averaged equation under the compact-open topology as the time scale goes to zero--in other words, there exists a unique recurrent solution to the original equation in a neighborhood of the stationary solution of averaged equation when the time scale is small. Finally, we establish the global averaging principle in weak sense, i.e. we show that the attractor of original system tends to that of the averaged equation in probability measure space as the time scale goes to zero. For illustration of our results, we give two applications, including stochastic reaction diffusion equations and stochastic generalized porous media equations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube