Invariant probability measures from pseudoholomorphic curves II: Pseudoholomorphic curve constructions (2109.00106v2)
Abstract: In the previous work, we introduced a method for constructing invariant probability measures of a large class of non-singular volume-preserving flows on closed, oriented odd-dimensional smooth manifolds with pseudoholomorphic curve techniques from symplectic geometry. The technique requires existence of certain pseudoholomorphic curves satisfying some weak assumptions. In this work, we appeal to Gromov-Witten theory and Seiberg-Witten theory to construct large classes of examples where these pseudoholomorphic curves exist. Our argument uses neck stretching along with new analytical tools from Fish-Hofer's work on feral pseudoholomorphic curves.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.