Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic Sliding Window for Meeting Summarization

Published 31 Aug 2021 in cs.CL | (2108.13629v1)

Abstract: Recently abstractive spoken language summarization raises emerging research interest, and neural sequence-to-sequence approaches have brought significant performance improvement. However, summarizing long meeting transcripts remains challenging. Due to the large length of source contents and targeted summaries, neural models are prone to be distracted on the context, and produce summaries with degraded quality. Moreover, pre-trained LLMs with input length limitations cannot be readily applied to long sequences. In this work, we first analyze the linguistic characteristics of meeting transcripts on a representative corpus, and find that the sentences comprising the summary correlate with the meeting agenda. Based on this observation, we propose a dynamic sliding window strategy for meeting summarization. Experimental results show that performance benefit from the proposed method, and outputs obtain higher factual consistency than the base model.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.