Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

A knot Floer stable homotopy type (2108.13566v1)

Published 31 Aug 2021 in math.GT, math.AT, and math.SG

Abstract: Given a grid diagram for a knot or link K in $S3$, we construct a spectrum whose homology is the knot Floer homology of K. We conjecture that the homotopy type of the spectrum is an invariant of K. Our construction does not use holomorphic geometry, but rather builds on the combinatorial definition of grid homology. We inductively define models for the moduli spaces of pseudo-holomorphic strips and disk bubbles, and patch them together into a framed flow category. The inductive step relies on the vanishing of an obstruction class that takes values in a complex of positive domains with partitions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube