Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Degenerating Kähler-Einstein cones, locally symmetric cusps, and the Tian-Yau metric (2108.13318v2)

Published 30 Aug 2021 in math.DG and math.CV

Abstract: Let $X$ be a complex projective manifold and let $D\subset X$ be a smooth divisor. In this article, we are interested in studying limits when $\beta\to 0$ of K\"ahler-Einstein metrics $\omega_\beta$ with a cone singularity of angle $2\pi \beta$ along $D$. In our first result, we assume that $X\setminus D$ is a locally symmetric space and we show that $\omega_\beta$ converges to the locally symmetric metric and further give asymptotics of $\omega_\beta$ when $X\setminus D$ is a ball quotient. Our second result deals with the case when $X$ is Fano and $D$ is anticanonical. We prove a folklore conjecture asserting that a rescaled limit of $\omega_\beta$ is the complete, Ricci flat Tian-Yau metric on $X\setminus D$. Furthermore, we prove that $(X,\omega_\beta)$ converges to an interval in the Gromov-Hausdorff sense.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.