Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Incoherent localized structures and hidden coherent solitons from the gravitational instability of the Schrödinger-Poisson equation (2108.13250v1)

Published 30 Aug 2021 in nlin.PS

Abstract: The long-term behavior of a modulationally unstable conservative nonintegrable system is known to be characterized by the soliton turbulence self-organization process. We consider this problem in the presence of a long-range interaction in the framework of the Schr\"odinger-Poisson (or Newton-Schr\"odinger) equation accounting for the gravitational interaction. By increasing the amount of nonlinearity, the system self-organizes into a large-scale incoherent localized structure that contains "hidden" coherent soliton states: The solitons can hardly be identified in the usual spatial or spectral domains, while their existence is unveiled in the phase-space representation (spectrogram). We develop a theoretical approach that provides the coupled description of the coherent soliton component (governed by an effective Schr\"odinger-Poisson equation) and of the incoherent component (governed by a wave turbulence Vlasov-Poisson equation). The theory shows that the incoherent structure introduces an effective trapping potential that stabilizes the hidden coherent soliton, a mechanism that we verify by direct numerical simulations. The theory characterizes the properties of the localized incoherent structure, such as its compactly supported spectral shape. It also clarifies the quantum-to-classical correspondence in the presence of gravitational interactions. This study is of potential interest for self-gravitating Boson models of fuzzy dark matter. Although we focus our paper on the Schr\"odinger-Poisson equation, we show that our results are general for long-range wave systems characterized by an algebraic decay of the interacting potential. This work should stimulate nonlinear optics experiments in highly nonlocal nonlinear (thermal) media that mimic the long-range nature of gravitational interactions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube