Papers
Topics
Authors
Recent
Search
2000 character limit reached

Functional Nanomaterials Design in the Workflow of Building Machine-Learning Models

Published 16 Aug 2021 in cond-mat.mtrl-sci and cs.LG | (2108.13171v1)

Abstract: Machine-learning (ML) techniques have revolutionized a host of research fields of chemical and materials science with accelerated, high-efficiency discoveries in design, synthesis, manufacturing, characterization and application of novel functional materials, especially at the nanometre scale. The reason is the time efficiency, prediction accuracy and good generalization abilities, which gradually replaces the traditional experimental or computational work. With enormous potentiality to tackle more real-world problems, ML provides a more comprehensive insight into combinations with molecules/materials under the fundamental procedures for constructing ML models, like predicting properties or functionalities from given parameters, nanoarchitecture design and generating specific models for other purposes. The key to the advances in nanomaterials discovery is how input fingerprints and output values can be linked quantitatively. Finally, some great opportunities and technical challenges are concluded in this fantastic field.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.