Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A quantum number theory (2108.10145v1)

Published 18 Aug 2021 in quant-ph, math-ph, and math.MP

Abstract: We employ an algebraic procedure based on quantum mechanics to propose a quantum number theory' (QNT) as a possible extension of theclassical number theory'. We built our QNT by defining pure quantum number operators ($q$-numbers) of a Hilbert space that generate classical numbers ($c$-numbers) belonging to discrete Euclidean spaces. To start with this formalism, we define a 2-component natural $q$-number $\textbf{N}$, such that $\mathbf{N}{2} \equiv N_{1}{2} + N_{2}{2}$, satisfying a Heisenberg-Dirac algebra, which allows to generate a set of natural $c$-numbers $n \in \mathbb{N}$. A probabilistic interpretation of QNT is then inferred from this representation. Furthermore, we define a 3-component integer $q$-number $\textbf{Z}$, such that $\mathbf{Z}{2} \equiv Z_{1}{2} + Z_{2}{2} + Z_{3}{2}$ and obeys a Lie algebra structure. The eigenvalues of each $\textbf{Z}$ component generate a set of classical integers $m \in \mathbb{Z}\cup \frac{1}{2}\mathbb{Z}{*}$, $\mathbb{Z}{*} = \mathbb{Z} \setminus {0}$, albeit all components do not generate $\mathbb{Z}3$ simultaneously. We interpret the eigenvectors of the $q$-numbers as `$q$-number state vectors' (QNSV), which form multidimensional orthonormal basis sets useful to describe state-vector superpositions defined here as qu$n$its. To interconnect QNSV of different dimensions, associated to the same $c$-number, we propose a quantum mapping operation to relate distinct Hilbert subspaces, and its structure can generate a subset $W \subseteq \mathbb{Q}{*}$, the field of non-zero rationals. In the present description, QNT is related to quantum computing theory and allows dealing with nontrivial computations in high dimensions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.