Papers
Topics
Authors
Recent
2000 character limit reached

Regression Discontinuity Designs

Published 20 Aug 2021 in econ.EM, stat.AP, and stat.ME | (2108.09400v2)

Abstract: The Regression Discontinuity (RD) design is one of the most widely used non-experimental methods for causal inference and program evaluation. Over the last two decades, statistical and econometric methods for RD analysis have expanded and matured, and there is now a large number of methodological results for RD identification, estimation, inference, and validation. We offer a curated review of this methodological literature organized around the two most popular frameworks for the analysis and interpretation of RD designs: the continuity framework and the local randomization framework. For each framework, we discuss three main topics: (i) designs and parameters, which focuses on different types of RD settings and treatment effects of interest; (ii) estimation and inference, which presents the most popular methods based on local polynomial regression and analysis of experiments, as well as refinements, extensions, and alternatives; and (iii) validation and falsification, which summarizes an array of mostly empirical approaches to support the validity of RD designs in practice.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.